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Abstract
This paper describes two forms of information visualization
for mixed-initiative systems associated with team
collaboration and begins to discuss how plans might be
formulated to achieve the visualizations. Common
understanding visualization is concerned with visualizing
the information a team employs, whereas visual
collaboration is concerned with visualizing the ongoing,
incremental information collection, the credibility and
origins of that information, and the dynamic interpersonal
relationships of the team itself. The first is the more
“classic” form of visualization where data and information
is collected, analyzed, abstracted, and tailored for display to
the user. We are concerned not only with visualization for
the single user, but also with visualizing the relationship the
information holds in regard to the entire team. At the level
of the individual user, a mixed-initiative system must
consider how to tailor the appropriate information given the
user’s skill, expertise, and preferences. At the corporate
level, a system must manage the display of information
across multiple human users and system components that
share a common goal. The second form of visualization
deals with the collaboration between a user and his/her
mixed-initiative system, between users, and between
systems. That is, the user needs to understand and visualize
the collaboration, how the user fits into it, and the associated
human/information interaction and processes involved in
such collaboration. We claim both types of visualization are
important for effective collaboration.

Introduction

The complexity of information intensive environments is
overwhelming users. Mixed-initiative systems address this
problem of increasing task load by providing assistance to
users in information intensive environments. A system can
help alleviate the user’s task load and increase situational
awareness by collecting, extracting, and analyzing relevant
information, by providing information abstractions of that
information, and by helping the user manage the display of
information at the user interface. Knowing the user and
how to best present information to the user is central in this
support.

The interaction between humans and information is a
highly complex and dynamic task in which the acquisition,
visualization, manipulation, and suppression of knowledge
are all crucial supportive components to a user’s goals.  In
this respect, each above component of the interaction can
be viewed as a mixed-initiative planning task from the
perspective of an intelligent mixed-initiative system
assigned to assist a human in an information environment.
For example, wanting to acquire a piece of knowledge is
equivalent to possessing a knowledge goal to change the
current state of information. Such goals can be achieved by
generating and executing knowledge plans that are
analogous to plans to affect the state of the physical
environment. Knowledge plans may involve actions such
as information gathering activities on the internet  and
displaying graphical data at the user interface Like
standard plans these actions may possess constraints such
as the restriction of particular classes of information.

One of the advantages of using a mixed-initiative
system is the ability to allocate tasks, goals, and/or
functions between a human user and the (computer) system
to improve the individual performance (e.g., effectiveness
and efficiency) of each. A user’s strength lies in the ability
to provide guidance and insight concerning information
that is necessary to draw complex, higher level inferences
for data. The system’s strength lies in its ability to perform
data acquisition and management, to include display of this
information, from many heterogeneous sources, low level
quantitative and qualitative analysis, and routine inference
to enable decision support. A key to improving
performance is allocating the tasks correctly and having a
keen understanding of whom is doing what for/to whom.

In distributed environments where multiple users and
their associated systems may be interacting collaboratively
to achieve a goal, a “higher-level” knowledge plan
emerges from the individual knowledge plans of each user.
The ability for individuals to “see the big picture” of the
emerging knowledge plan (e.g., who are the other users,
what are the origins of the information, is the information
credible, and how does one knowledge plan affect the
overall plan) is vital to effective collaboration.



This paper describes two forms of information
visualization for mixed-initiative systems and speculates as
to the manner for which the visualization can be planned.
Specifically, we look at the collaboration of multiple users
to achieve some goal and the planning for information
visualization in mixed-initiative systems. We consider two
types of visualization in distributed collaboration.

•  Common understanding visualization is concerned with
visualizing the information a team employs with respect
to the team objectives but tailored for the individual
team member.

•  Visual collaboration is concerned with visualizing the
ongoing, incremental information collection, the
credibility and origins of that information, and the
dynamic interpersonal relationships of the team itself.

We claim both types of visualization are important for
effective collaboration. We investigate a number of critical
research issues along these two directions. To highlight
some of the issues, we discuss a simple version of planning
a tailored information presentation and expand the scenario
to the case of distributed collaboration. Subsequent
sections will enumerate the components of visualization
and expand on our claims.

Common Understanding Visualization

The main goal of information visualization can be summed
up with the adage: “the right information to the right
person at the right time.” The simplicity and succinctness
of the goal belies the breadth and of the ways to achieve
the goal. While there is much research on advanced
information visualization, much of the research deals with
single user/single system visualization. When multiple
users must collaborate to achieve a set of goals, visualizing
this “system-of-systems” becomes paramount. “Common
understanding” does not mean “common visualization.”
The ability of a system to effectively plan for information
visualization for all users of a collaborating team relies on
understanding the needs of the individual users,
appropriately displaying the information based on these
needs, and maintaining a consistent view of the emerging
plan. This section describes some of the methods used to
achieve the information visualization goal and some of the
research issues associated with each method.

User Modeling
From studies of human interaction with complex systems
in several domains, it is clear that sophisticated technology
alone does not inherently increase system effectiveness
(Mitchell & Sundstrom, 1997). Designing effective
collaborative information in real-world applications is a
complex endeavor. Although advances in computer
technologies provide useful tools to support the
organization and retrieval of information, purely
technology-centered approaches often lead to problems in

user-system mismatches and result in inflexible and hard-
to-use systems (Narayanan et al., 1997). Several factors,
including the user's cognitive capabilities and limitations,
the work domain and task constraints, the content and form
of support from computer agents, influence the interactive
collaborative planning process.

Providing intelligent assistance and performing tasks
on the user's behalf requires an understanding of the goals
the user is performing, the motivation for pursuing those
goals, and the actions that can be taken to achieve those
goals. User intent denotes the actions a user intends to
perform in pursuit of his/her goal(s). The term user intent
ascription is the attribution of actions to the goal(s) a user
will pursue.  That is, user intent ascription is the process of
determining which actions are attributable to a specific
goal or goals. Therefore, for a system to be able to assist
the user in pursuing those goals, the system must be
capable of ascribing user intent to offer timely, beneficial
assistance (Brown, et al., 1998a).

There is a pervasive deficiency in representing the
decision-makers in existing systems. The underlying
system component that enables decision aids to assist users
with their tasks is a user model (Benyon and Murray
1993). An accurate user model is considered necessary for
effective ascription of user intent. User modeling is
concerned with how to represent the user's knowledge and
interaction within a system to adapt the system to the
needs, preferences, work flow, goals, skill, expertise,
disabilities, etc. of the user as well as the time-criticality,
decision-criticality, and uncertainty of the information.
Researchers from the fields of artificial intelligence,
human-computer interaction, psychology, education, as
well as others have investigated ways to construct,
maintain, and exploit user models.

The benefit of utilizing a dynamic user model within a
mixed-initiative system is to allow that system to adapt its
information presentation over time to a specific user. To
realize this benefit, the user model must effectively
represent the user's knowledge and intent within the system
to accurately predict how to adapt the system. The
elicitation, specification, design, and maintenance of an
accurate user model is necessary for effective ascription of
user intent. Research issues include the following.

•  Defining the necessary and sufficient methods of
eliciting, specifying, designing, and maintaining
autonomous and collaborative, semi-autonomous (i.e.,
human-in-the-loop) user model-based decision aids
capable of identifying and assessing information
intensive environments.

•  Determining the appropriate goals to pursue and tasks to
perform

•  Performing the tasks given the appropriate level of
autonomy.

Of importance in distributed and/or collaborative
environments is the ability to model the user’s mental



model of who is doing what for/to whom. That is, who is
responsible for achieving a goal?

Augmented Visualization
Interactions between the user and system, multiple users,
and between systems expand the visualization in temporal
sense, just like the increase of field of view in spatial
domain. Advances in various modalities in interactions
such as speech (to include input ,i.e., speech recognition,
and output, e.g., 3D audio), gaze, gestures, virtual reality,
and anthropomorphic interfaces not only increase the
naturalness of the dialog between humans and computers,
but they also augment visualization though bandwidth
improvement. However, for effective and efficient
communication of the information, determining the best
interface modality for information “display” is necessary.

Research to determine what modalities best support
overall visualization (in the broadest sense of the word),
the requirements for their use, and ways to effectively
integrate them into existing environments is an area ripe
for future research. One of the most import issues in
visualization research is to leverage human capabilities in
information perceptualization and interaction skills. These
capabilities vary among a user population. Several
researchers have chosen a user model-based approach for
determining the appropriate modality for information
display (Karagiannidis, et al. 1995, Stephanidis, et al.
1996, Horvitz and Lengyel 1997, Brown, et al. 1999).
Given a user model of the user's expertise and history of
performance on the planning task, one can improve the
efficiency by tailoring visualization and interaction tasks to
the user. A mixed-initiative system can further explore
interactive visualization tailored to particular goals.
Interactive visualization should also accommodate
temporally varying events such as change of goal-sub-goal
relationships through user interactions.

Information Dynamics
We anticipate that new information in any nontrivial
domain of interest may arrive asynchronously, and thus,
the system must plan in a continuous fashion. That is, one
cannot assume complete and consistent information ab
initio1. Instead, a knowledge source is only partially
complete at any point in time and may contain substantial
noise. If new information demands further elaboration, the
execution of information-gathering actions may be
required to produce additional details. Therefore, steps of a
knowledge plan may have to be executed before the final
plan is generated. The result is that planning for knowledge
goals, like planning for the primary collaborative task
itself, is by nature a continual process of planning and
execution that must be interleaved. The user(s) needs to be
able to visualize how the information “unfolds” over time.

                                      
1 To be sure, we may never have complete a n d
consistent information. Knowing this is the case is just as
impor tant .

Although the ideas are extensions and adaptations of
existing results in the machine-planning and learning
literature, the application of such results to human-
information interaction is novel. Results from Cox (1996)
provide a foundation for building a theory of errors in
information interaction and recovery from it. Further
research reported in Veloso, Pollock, & Cox (1998), Cox,
& Rasul (unpublished), and Cox & Veloso (1998)
contribute a foundational theory of rational-driven sensing
monitors that link changes in the environment to adaptation
of plans and goals in continuous planning environments.
This foundation applies generally, despite the class of
planner being used (e.g., state-space or partial order) or the
domain being manipulated. Mapping to an information
domain will require making the necessary interpolations to
algorithms and appropriate development of representations.
Note, however, that current research has already
demonstrated the fundamental relationship between
planning and information acquisition (Cox, 1996; Etzioni
& Weld, 1994; Ram & Hunter, 1992).

Common understanding information visualization
methods attempt to provide “the right information to the
right person at the right time.” User modeling is concerned
with how to represent a specific user's knowledge and
interaction within a system to adapt the information
presentation to the needs, preferences, work flow, goals,
skill, expertise, disabilities, etc. of the user. Determining
the best of various interaction modalities with the
information given the user model further augments the
user’s understanding of the information presented. The
ability to model the dynamic nature of information as well
as the time-criticality, decision-criticality, and uncertainty
of the information allows users to visualize the “unfolding”
of the information over time. These methods are important
features of mixed-initiative systems.

Visual Collaboration

The second form of visualization deals with the
collaboration between a user and his/her mixed-initiative
system (human/system), between users (human/human),
and between systems (system/system). There are many
examples of environments where multiple users must
collaborate to achieve a goal (e.g., air campaign planning,
job shop scheduling). Single user environments imply one
knowledge plan to help the user achieve his/her goal.
However, in an environment where several users work
together to achieve a goal, a “higher-level” knowledge plan
emerges from the individual knowledge plans of each user.
It easy to lose track of who the other users are, who has a
critical task that must be accomplished, who controls what
information, etc. The ability for individuals to “see the big
picture” of the emerging knowledge plan—who are the
other users, what are the origins of the information, is the
information credible, how does one knowledge plan affect
the overall plan, etc.—is vital to effective and efficient
collaboration.



Information visualization of the collaborative process
can aid users of mixed-initiative systems in understanding
the systems’ performance. This section investigates several
human-centered issues for visual collaboration.

Credibility
As previously mentioned, an advantage of mixed-initiative
systems is their ability to perform tasks on the user’s
behalf. As a result of this advantage, the question arises
concerning how to build human confidence in the system’s
abilities to “do the right thing.” Tseng and Fogg present an
overview of credibility in computing technology (1999).
They contend credibility is synonymous with the term
“believability.” The phrases “trust in information”, “trust
in the output”, and “accepting the advice” all refer to the
credibility of the computer system.

There are two extremes of the credibility issue. At one
end, the skeptic refuses to rely on data provided by these
systems. Baecker et al. (1995) state one goal of human-
computer interaction research is to ensure the user has a
feeling of control. Users may feel they have lost control
when they have no idea concerning what the system is
doing nor what sort of processing the system performs to
transform raw data into (possibly) useful information.
Klein (1997) argues that “experts prefer to build their own
mental models rather than rely on the aggregation and
analyses of subordinates who are less skilled.” These
“subordinates” include computer systems. On the other end
of the spectrum is “blind trust,” or over reliance on the
decision aids. Kilpatrick (1999) states that “as we train
more and more reliance on computer systems…we are not
training the related common sense, and for lack of a better
word, skepticism of computer data. [We] are growing
[users] that will blindly trust computer-supplied data,
which will make them very vulnerable…” Interactive,
visual user models can address the lack of credibility
problem. These user models allow the user to
collaboratively help the system modify the user model and
allow users to build their own mental models of the
systems capabilities (Brown 1998).

Information Pedigree
The ability to determine the origin of information lends
greatly to the credibility of this information. The process of
determining the origins of information is termed
information pedigree. For a mixed-initiative system to
reason about building a knowledge plan for information
visualization, it must also reason about the state of
information held by other agents including the human
user(s). This state may contain irrelevant, incorrect,
dissonant, and/or missing information. Building a
knowledge plan with uncertain information can result in
plan abandonment and therefore excessive replanning, or
perhaps worse, achievement of the wrong goals. Therefore,
we are concerned with the information’s pedigree. That is,
we desire to know the answers to questions such as “who
`owns’ the data/information?”, “are they a trusted agent?”,

“how was the information derived?”, and “how current is
the information?” The answers to these questions may be
obtained over time and by many disparate means. Methods
to visualize this entire process of information pedigree
development are needed and are paramount to increasing
system credibility.

Visual Team Planning
The visualization of abstract relationships involved in
collaborative planning includes the extraction of pertinent
parameters as well as a graphical presentation of the
information. Graphical attributes such as locality,
proximity, size, and color can be used to represent entities
and events occur in a planning process such as goals and
precedence relationships. The plan representation and the
associated goal-subgoal relationships can be expressed as
associated graphs. Interaction tasks are simultaneously
defined to facilitate the exploration of the data set and
accommodate the dynamics during the planning process.
Different levels of details in visualization are created to
present the major and minor goal relationships in a
networked hierarchical fashion.

A surprising number of domains of interest in the real
world involve distributed, collaborative “teams” of
individuals interacting to achieve a common goal. While
visualization for one user of one mixed-initiative system is
important, an equally important goal is presenting a
consistent, meaningful representation of the
data/information to the team given distributed
heterogeneous information sources, applications, and
individuals.
A “consistent, meaningful representation” connotes an
“intelligent system” where the intelligence is based not
only on knowledge of the environment, to include the
(possibly dynamic) information sources, but also the
specific users of the team.  Of utmost importance is the
utilization of methods for unifying the intelligent systems,
decision support, collaborative technologies and the
capabilities and limitations of humans, teams, and work
organizations into effective distributive network operating
units. Research tasks include teamwork task analysis,
tactical and strategic planning perspectives and
decomposition, problem-solving strategy engagement,
team decision-making in naturalistic environments, and
domain knowledge engineering for “chunking” of
information displays. Methods include cognitive work
analysis, team-in-the-loop simulations, computational
modeling, ethnographic studies of the field of practice, and
concept prototyping.

User Interface Planning as a Step toward
Visualization Planning

In the context of teams of people collaborating in some
common task, the goal to produce a tailored information
view can become a very complex one to achieve. To



present the proper information that supports an individual
in the team and allows that person to visualize the
information with respect to the overall activity, a
cooperating system must take in to consideration many
factors. To illustrate this complexity, we will consider a
simple and restricted subset of the problem. That is, we
will examine how a system can begin to assist the user by
planning the arrangement and configuration  of objects
within the user’s desktop environment.

As anyone knows who has used a modern operating
system with a windowing interface, the desktop easily and
frequently becomes crowded with multiple overlapping
windows of various sizes and content, many of which are
no longer relevant to the user’s current activity. Clutter can
become so intrusive as to interfere with user  productivity
and to make it difficult to locate the most relevant window
for a desired activity. The subsequent sections will
examine the problem of planning to reduce window clutter
and the associated implementation in the PRODIGY
planning architecture.

Planning Clutter-Free Screens
Seeking to cast the problem of information presentation
and visualization as a planning task, we examine the
reduced goal to achieve screen clarity (i.e., to prevent
“window clutter”). In the single-user case that ignores the
content of windows, clarity can be achieved if a suitable
amount of clear space is included and minimal percentage
of window overlap is maintained. One solution is to allow
only a particular number of windows at a given time.
When the number increases beyond the threshold, the
system can iconify the least recently used window.
However, this solution does not easily scale to more
complex solutions that incrementally add further
knowledge about the user and the user’s task. A
knowledge-based solution is to use an automated planner
to make the decision as to which window to affect and in
what manner.

The Prodigy4.02 system (Veloso, et al., 1995) employs
a state-space nonlinear planner and follows a means-ends
analysis backward-chaining search procedure that reasons
about both multiple goals and multiple alternative
operators from its domain theory appropriate for achieving
such goals. A domain theory is composed of a hierarchy of
object classes and a suite of operators and inference rules
that change the state of the objects. A planning problem is
represented by an initial state (objects and propositions
about the objects) and a set of goal expressions to achieve.
Planning decisions consist of choosing a goal from a set of
pending goals, choosing an operator (or inference rule) to
achieve a particular goal, choosing a variable binding for a
given operator, and deciding whether to commit to a

                                      
2 Note that Prodigy4.0 is the generative p lanning
subsystem in the overall PRODIGY planning and learning
architecture.

possible plan ordering and to get a new planning state or to
continue subgoaling for unachieved goals. Different
choices give rise to different ways of exploring the search
space. These choices can be guided by either control rules
(see Minton, 1988), by past problem-solving episodes (i.e.,
cases; see Veloso, 1994), or by domain-independent
heuristics (see Veloso and Stone, 1995).

Because the overall task for common understanding
visualization is to assist the user to comprehend  infor-
mation relevant to the overall collaborative objectives, an
important subtask is to present to the user a tailored picture
of that information. To better understand some of the
issues involved in this problem, we consider how
PRODIGY decides which window to iconify or move
when managing a screen layout for windows.

The Window Domain3

This domain explores the problem of alleviating window
clutter using a simple world composed of a screen and an
arbitrary number of windows. The screen is divided into
four area quadrants to render windows and a horizontal
rectangle or bar across the bottom to hold icons. When not
iconified, a window is contained in exactly one quadrant
and fills the entire area. When iconified, the window is
moved to the icon bar. Operations on windows are a subset
of normal window operations: move a window; minimize a
window; and restore a window. A window cannot be
resized in this domain.

Several states exist for windows and quadrants. First a
window can be part of the set of windows being used by
the user for the current task. All windows in this set will be
considered "active." All windows not active are considered
to belong to a suspended user task. Second a window can
be an icon (minimized), or not an icon. By definition an
iconified window is never part of the active set. Third a
window can be on top of another window (i.e., one
window can entirely cover another window in the same
area). Therefore a window can be on top (visible on the
screen), or not be on top (there is some other window on
top of it). Whether a window is on top or not is inferred.
Finally, an area can be "clear" or not clear. A clear
quadrant indicates that there are no windows currently in
the area.

Fig. 1 shows a PRODIGY operator in this domain. The
MoveOffOf operator has two window and two area
variables. The operator preconditions are that the window
to be moved (w) is on top, that the window is not in the
quadrant to where it will be moved (a), and that it occupies
some other quadrant (a1), and that it is currently on another
window (w-below).

                                      
3 The full domain and problem definition a r e available
at the following URL.
http://www.cs.wright.edu/~mcox/mii/adendum/



The effects of applying the move operator is to assert
the following facts:
1. <w> is now in the new quadrant <a> and not in the old

one, <a1>.
2. <w-below> is now on top and <w> is no longer on top

of it.
3. <a>is not clear.
4. If another window, <w1>, is in the area moved into by

<w>, then it is no longer on top and <w> is on top of it
and overlaps it.

Example Planning Episode

The example presented here has an initial state consisting
of four windows, W1-W4, stacked in quadrant A1 with W1
on the bottom and W4 on top. The goal is to clarify the
screen by achieving a clutterfree environment in all
quadrants. This can be achieved in each quadrant by not
having overlapping windows (i.e., one on top of another).
The solution is a simple plan of first moving W4 off of W3
and into A2, W3 to A3, and W2 to A4. However, the
simplicity of the problem and solution belies the
complexity of the process that is necessary to produce this
example. The domain required multiple inference rules,
operator constraints, and search control rules to instantiate

the subtle heuristics that managed the decision choices.
The firing of one such control rule can be seen in the
PRODIGY trace below and its defintion in Fig. 2, example
variable constraints appear in Fig. 1, and indications of
inference rule applications are visible in the plan window
of Fig. 3.

Creating objects (W1 W2 W3 W4) of type WINDOW
Creating objects (A1 A2 A3 A4) of type AREA
  2 n2 (done)
  4 n4 <*finish*>
  5   n5 (clutterless a1) [3]
  7   n7 <infer-no-clutter a1>
  8     n8 not (overlaps w4 w3) [5]
Firing select binding rule SELECT-TOP-WINDOW-
BINDING-FOR-MOVEOFFOF at node 9
 10     n10 <moveoffof w4 a2 w3> [11]
 11     n11 <MOVEOFFOF W4 A2 W3> [5]
 12     n12 not (overlaps w3 w2) [4]
Firing select binding rule SELECT-TOP-WINDOW-
BINDING-FOR-MOVEOFFOF at node 13
 14     n14 <moveoffof w3 a3 w2> [11]
 15     n15 <MOVEOFFOF W3 A3 W2> [4]
 16     n16 not (overlaps w2 w1) [3]
Firing select binding rule SELECT-TOP-WINDOW-
BINDING-FOR-MOVEOFFOF at node 17
 18     n18 <moveoffof w2 a4 w1> [11]
 18     n19 <MOVEOFFOF W2 A4 W1> [3]
Achieved top-level goals.
#<PRODIGY result: T, 0.11 secs, 19 nodes, 1 sol>

The Prodigy4.0 trace above shows the state of the
planner at each decision cycle. Although the system has to
only solve the single goal of making area A1 clutterless, it
has to manage this without changing the clutter-free state
of the remaining areas. That is, it cannot put multiple
windows in areas A2, A3, or A4.. This is accomplished by
the selective choice of bindings for the variable <a> (i.e.,
the area to which a window is moved) enforced by control
r u l e  SELECT-TOP-WINDOW-BINDING-FOR-
MOVEOFFOF.

The definition of this control rule is contained in Fig. 2.

(OPERATOR MOVEOFFOF

  (params <w> <a> <w-below> )

  (preconds

   ((<w> (and WINDOW

                               (gen-from-pred ’(on-top <w>))) )

    (<w-below> WINDOW)

    (<a> AREA)

    (<a1> (and AREA (diff <a> <a1>))))

   (and

    (on-top <w>)

    (clear <a>)

    (on-top-of <w> <w-below>)

    (~(in <w> <a>))

    (in <w> <a1>)

  (effects

   ((<w1> WINDOW ))

   ((add (on-top <w-below>))

    (add (in <w> <a>))

    (del (on-top-of <w> <w-below>))

    (del (overlaps <w> <w-below>))

    (del (in <w> <a1>))

    (del (clear <a>))

    (if (and (in <w1> <a>)

  (on-top <w1>)
Fig. 1. Move OP

Fig. 2. Example control rule

(CONTROL-RULE

SELECT-TOP-WINDOW-BINDING-FOR-MOVEOFFOF

       (if  (and (current-operator  MOVEOFFOF)

(type-of-object <Windo> WINDOW)

(true-in-state (on-top  <Windo>))

(true-in-state (clear <QTo>)))

)

       (then select bindings



Extending the Domain to Visualization Planning
The section above illustrates a problem approach rather
than a solution. Many issues arise when contemplating an
extended view. The domain above assumes a single user
which is disengaged from the solution itself. The content of
the windows is ignored, and the user-task is unknown.
Indeed, no context is included. Furthermore, even though
the domain is simple, and only a subset of a realistic
situation, the complexity of the search space is such that
without heuristic control the generation of plans is
impractical. Finally the user may not trust such solutions
when produced.

Despite such factors, however, this start represents an
preliminary approach from which the idea of planning the
visualization can be explored. The implementation allows
us to see how far the notion of planning for visualization at
the interface can be extended. The next stages of
experimentation include the addition of knowledge
concerning the content of each window and the
relationship windows have to the users tasks. This
information can be provided by an external module that
sets an initial problem definition file. For example, the

active attributes for windows signal those windows which
are being employed by the user for the current problem-
solving task.

Another important addition is direct engagement by the
user in the process of managing the interface and the
visualization. A hook already exists in the PRODIGY
architecture that allows any decision made by the system to
be made by the user. Taking advantage of this feature, we
can allow the user to override decisions the system intends
or to help the system make such choices when uncertainty
exists.

Many other directions exist from which to expand the
implementation. At this time the research has just begun,
so few result are available to bias these directions.
However, embedding a more complete knowledge of user
and window characteristcs will enhance mixed-initiative
decisions made by future implementations.

Characteristics of the user

•  Expertise

•  Team relat ionship

•  Cognitive workload and er rors

•  Personal domain knowledge

•  Outstanding information requests

Window Characteristics

•  Syntax - how windows are associated

hiearchically and linked visually

•  Semantics -what functions are provided b y

the information or tool in each window

•  Conceptual  Model -how the contents of t h e

windows contribute to overall workflow

Conclusions

One of the most import issues in visualization research is
to leverage human capabilities in information
perceptualization and interaction skills. These capabilities
vary among individual users in a given population and
teams of users. Given a model of the user's needs,
preferences, work flow, goals, skill, expertise, disabilities,
etc. as well as the time-criticality, decision-criticality, and
uncertainty of the information and history of performance
on the planning task, a mixed-initiative system can
improve the efficiency by tailoring visualization and
interaction tasks to improve a user’s performance in
achieving his/her goals. Interactive visualization should
also accommodate temporally varying events such as
change of goal-sub-goal relationships through user
interactions.

Related to the interactive tailoring of the displayed
information is the visualization of the collaborative process

Fig. 3. PRODIGY goal tree and plan



between user and system, multiple users, and interacting
systems. This visualization can help build confidence in
the data abstractions and therefore trust in the analyses the
systems provide. The visualization of the information
pedigree improves system credibility as well. Knowing
where the information originated from, the uncertainty of
the information, what pre-processing occurred to transform
the data to information are all vital to increasing the level
of trust in the information. Finally, the ability to visualize
the interaction between the various components in a
distributed, collaborative work environment has the benefit
of providing a consistent, meaningful representation of the
information and tasks involved. This representation,
tailored for each member of the team can insure a common
understanding of the tasks that are being performed.
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